

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 173 (2003) 1-12

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Synthesis and crystal structure of α and β -Rb₆U₅V₂O₂₃, a new layered compound

S. Obbade,^{a,*} C. Dion,^a L. Duvieubourg,^a M. Saadi,^b and F. Abraham^a

^a Laboratoire de Cristallochimie et Physicochimie du Solide UMR CNRS 8012, ENSCL-USTL, BP 108, 59652 Villeneuve d'Ascq Cedex, France ^b Laboratoire de Coordination et Analytique, Faculté des Sciences, Université Chouaib Doukkali, B.P. 20 El Jadida, Morocco

Received 17 October 2002; received in revised form 12 December 2002; accepted 18 December 2002

Abstract

A new alkali uranyl vanadate, $Rb_6U_5V_2O_{23}$ has been synthesized by solid-state reactions. According to synthesis method, two allotropic varieties have been found and their structures determined from single-crystal X-ray diffraction data. Both compounds crystallize in the monoclinic system with space groups C2/c and $P2_1/n$ for α and β varieties, respectively. α -Rb₆U₅V₂O₂₃ unit-cell parameters are a = 24.887(8) Å, b = 7.099(2) Å, c = 14.376(4) Å, $\beta = 103.92(1)^{\circ}$, V = 2465.2(6) Å³, Z = 4, $\rho_{\text{mes}} = 5.86(2)$ g cm⁻³ $\rho_{cal} = 5.85(1) \text{ g cm}^{-3}$ and for β -Rb₆U₅V₂O₂₃ a = 7.1635(9) Å, b = 14.079(2) Å, c = 24.965(4) Å, $\beta = 90.23(1)^{\circ}$, V = 2517.8(6) Å³, Z = 4, $\rho_{mes} = 5.79(2) \text{ g cm}^{-3}$, $\rho_{cal} = 5.73(1) \text{ g cm}^{-3}$. A full-matrix least-squares refinement yielded, respectively, R = 0.032 and 0.041 for 1307 and 2276 independent reflections with $I > 2\sigma$ collected on a Smart diffractometer (MoK α radiation). Both structures are characterized by $[(UO_2)_5(VO_4)_2O_5]^{6-}$ layers which are flat and parallel to the $(10\overline{1})$ plane in α variety, corrugated and parallel to the (010) plane in the β variety. The layers are built up from VO₄ tetrahedra and UO₇ pentagonal bipyramids. In β variety, UO_6 distorted octahedra can also be considered. The UO_7 pentagonal bipyramids are associated by sharing opposite equatorial edges to form zig-zag infinite chains $(UO_5)_{\infty}$ parallel to the *b*-axis in α variety and to the *a*-axis in β variety, respectively. These chains are linked together on one side by VO_4 tetrahedra and on other side in α variety by UO_7 pentagonal bipyramids sharing corner and opposite edges and in β variety by UO₆ octahedra sharing opposite edges. Both structures differ by several characteristics. In α variety, the layers are flat according to the rows of VO₄ tetrahedra parallel to the *b*-axis whose apical oxygen atoms are alternatively pointing on the both sides in each row whereas in β variety, they are all pointing in the same side in a row parallel to a and in opposite side in the next, yielding to corrugated layers. © 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

All the alkaline uranyl vanadate compounds studied till today have a layered structure in which uranyl and vanadate polyhedra are linked together to form planar or corrugated sheets with the alkaline ion located between the sheets. The most wide-spread structure is that of the mineral carnotite, $K(UO_2)VO_4 \cdot xH_2O$. The anhydrous carnotite and its Li, Na, Rb, Cs, Tl, Ag, NH₄ analogues have been synthesized [1,2]. Most of the crystal structures were refined [3–5]. This class of compounds is very large because compounds of divalent cations $M_{0.5}(UO_2)VO_4 \cdot xH_2O$ have been prepared and characterized for M = Ca, Ba, Pb, Sr, Mn, Co, Ni [6–9]. The study of these materials have primarily been

Another type of layer appears when U/V $=\frac{1}{3}$ and has been recently described for CsUV₃O₁₁ [10]. The layers are built from VO₅ square pyramids and UO₈ hexagonal bipyramids sharing edges and corners which extend into infinite sheets formulated [UV₃O₁₁]^{*n*-} similar to the layers found in UV₃O₁₀ [11]. CsUV₃O₁₁ belongs to the class of compounds of general formula $M_{1/n}^{n+}$ UO₂ (VO₃)₃ · *x*H₂O with $M = H_3O^+$, Na⁺, NH₄⁺, Mg²⁺ [12] which are suspected to have a layered structure on

motivated by mineralogical interest. However, we have reported the relatively high mobility of the alkali metal ions in the Na_{1-x}K_x(UO₂)VO₄ ($0 \le x \le 1$) solid solution [5]. This family derived from carnotite seems particularly homogeneous from a structural view point. The UO₂²⁺ ions are connected by V₂O₈⁶⁻ units formed by two inverse VO₅ square pyramids sharing an edge to built planar layers. They therefore have the general formula $M_{2/n}^{n+}$ (UO₂)₂V₂O₈ · xH₂O.

^{*}Corresponding author.

E-mail address: obbade@ensc-lille.fr (S. Obbade).

the basis of their exchange properties. The cations, found between the $[UV_3O_{11}]^-$ layers can be exchanged for inorganic and organic cations and some water molecules can be replaced by other solvent molecules [13].

Two families of layered uranyl vanadates have been recently discovered: $M_6U_5V_2O_{23}$ with M = Na, K [14] and $M_7 U_8 V_2 O_{32} Cl$ with M = Rb, Cs [15]. Single crystals of these compounds have been obtained from $(UO_2)_3$ $(VO_4)_2 \cdot 5H_2O$ [16] towards attempts at ion "exchange" reactions in molten alkali chlorides. In $(UO_2)_3$ $(VO_4)_2 \cdot 5H_2O$, UO₇ pentagonal bipyramids are associated together by the oxygen atoms of the equatorial plane of the UO_7 bipyramids, a UO_7 bipyramid shares two opposite O-O edges with two other UO₇ bipyramids to form zig-zag infinite chains $(UO_5)_{\infty}$. The parallel chains are connected by VO₄ tetrahedra to built slightly corrugated layers $[UO_2(VO_4)]^-$ which are linked together by disordered UO_2^{2+} uranyl ions and water molecules. Reaction of this compound with molten potassium chloride led to the growth of orange single crystals of $K_6U_5V_2O_{23}$ [14]. In this compound, and the Na-analogous, the infinite $(UO_5)_{\infty}$ chains are preserved but the arrangement of the chains and VO₄ tetrahedra is different. In fact, two parallel chains are linked by oxygen atoms of the equatorial plane of the UO_7 pentagonal bipyramids not involved in the chain formation. In rubidium and cesium chlorides, the reaction is different and the yellow synthesized single crystals formula is $M_7 U_8 V_2 O_{32} Cl$ [15] with M = Rb, Cs. In these compounds, zig-zag chains of edge shared pentagonal bipyramids are once again obtained, but some of the oxygen atoms shared between two parallel chains are replaced by chlorine atoms. To prevent the substitution of chlorine in the double chains we have planed the use of largest anions. By reaction of $(UO_2)_3(VO_4)_2$ in an excess of molten rubidium iodide, orange single crystals of a new phase Rb₆U₅V₂O₂₃ are synthesized. This phase is called α -Rb₆U₅V₂O₂₃ because it exhibits a transition to a β form at high temperature. Single crystals of the β variety of Rb₆U₅V₂O₂₃ have been obtained. The both crystal structures are reported in this paper and compared between them and with the other $M_6U_5V_2O_{23}$ (M = Na, K) compounds.

2. Experimental

Single crystals of α -Rb₆U₅V₂O₂₃ were prepared by reaction of uranyl orthovanadate (UO₂)₃(VO₄)₂ · 5H₂O prepared as described in [16] in a large excess (30/1 M accounts) of molten rubidium iodide. The mixture was slowly heated in a platinum crucible to 350°C to allow dehydration of the uranyl salt. Afterwards the temperature was increased to 650°C, above the rubidium iodide melting point, 642°C, and below that of (UO₂)₃(VO₄)₂, 800°C. The molten mixture was slowly cooled (5°C/h) to room temperature and washed with water to dissolve the excess of rubidium iodide, giving orange single crystals.

Attempts to synthesize powder of α -Rb₆U₅V₂O₂₃ from a ternary stoichiometric mixture of Rb₂CO₃, U₃O₈ and V₂O₅ failed whatever the temperature. In fact, only the β form was obtained at high temperature. The preparation of pure α -Rb₆U₅V₂O₂₃ was achieved by heating a mixture of RbI (Aldrich), U₃O₈ (Prolabo rectapur) and V₂O₅ (Aldrich) in the molar ratios 6/1.67/1 at 650°C. The observed X-ray pattern of α -Rb₆U₅V₂O₂₃ is in perfect agreement with the calculated pattern from the crystal structure results.

Single crystals of β -Rb₆U₅V₂O₂₃ have been grown from a mixture of Rb₂CO₃, U₃O₈ and V₂O₅ in the molar ratios 2/0.67/1 slowly heated up to 1200°C. The molten mixture was slowly cooled (10°C/h) and finally orange single crystals were obtained. From crushed crystals, a distinctive X-ray diffraction pattern was observed that characterized the allotropic variety β -Rb₆U₅V₂O₂₃. The powder compound was synthesized by a solid state reaction between a stoichiometric mixture of U₃O₈ (Prolabo rectapur), V₂O₅ (Aldrich) and Rb₂CO₃ (Aldrich) according to the following reaction:

$$\frac{5}{3}$$
U₃O₈ + V₂O₅ + 3Rb₂CO₃ + $\frac{5}{6}$ O₂
→ β - Rb₆U₅V₂O₂₃ + 3CO₂.

The homogeneous mixture was slowly heated up to 1000° C and maintained at this temperature during 7 days with intermediate grindings and finally rapidly (150° C/h) cooled to room temperature. The X-ray diffraction pattern of the as-obtained powder is identical to that of crushed single crystals and to that of the calculated pattern from the crystal structure results.

Well shaped crystals of α and β -Rb₆(UO₂)₅(VO₄)₂O₅ were selected for structure determinations. Preliminary investigations indicated for both varieties a monoclinic symmetry. For α form, systematic absences of (h k l,h + k = 2n + 1 and h 0 l, l = 2n + 1) reflections indicated Cc and C2/c as possible space groups and for β , systematic absences of (0 k 0, k + k = 2n + 1 and h 0 l,h + l = 2n = 1) indicated the $P2_1/n$ space group. The structures of the two forms were solved in the centrosymmetric space groups.

Single-crystal X-ray diffraction data were collected on a BRUKER AXS diffractometer equipped with a SMART charge-coupled device (CCD) detector. Data were collected using monochromated MoK α radiation. Crystal data, conditions of data collections, and structure refinement parameters are reported in Table 1 for α and β forms.

The unit-cell parameters of the crushed single crystals were refined by a least-squares procedure from the indexed powder diffraction patterns, collected with a SIEMENS D5000 diffractometer (CuK α radiation) equipped with a back-end monochromator and corrected for $K\alpha_2$ contribution. The figures of merit, as

Table 1 Crystal data, intensity collection and structure refinement parameters for $Rb_6(UO_2)_5(VO_4)_2O_5$

	α -Rb ₆ (UO ₂) ₅ (V	$O_4)_2O_5$	β -Rb ₆ (UO ₂) ₅ (VO ₄) ₂ O ₅		
Crystal data					
Crystal symmetry	Monoclinic		Monoclinic		
Space group	C2/c		$P2_1/n$		
Unit-cell refined from single-crystal data	a = 24.887(8) Å		7.1635(9) Å		
	b = 7.099(2)Å		14.079(2) Å		
	c = 14.376(4) Å		24.965(4) Å		
	$\beta = 103.92(1)^{\circ}$		90.23(1)°		
Unit-cell volume	$2465.2(6) \text{ Å}^3$		2517.8(6) Å ³		
Ζ	4		4		
Calculated density	$\rho = 5.85(2) \mathrm{gcm}$	-3	$5.73(1)\mathrm{gcm^{-3}}$		
Measured density	$\rho = 5.86(2)\mathrm{gcm}$	_3	$5.79(2)\mathrm{gcm^{-3}}$		
Data collection					
Temperature (K)	293(2)		293(2)		
Equipment	Bruker SMART	CCD	Bruker SMART	CCD	
Radiation MoKa	0.71073 Å		0.71073 Å		
Scan mode	ω		ω		
Recording θ min/max (deg)	1.69/23.29		1.63/30.03		
Recording reciprocal space	$-27 \leq h \leq 27$		$-10 \leq h \leq 10$	$-10 \leqslant h \leqslant 10$ $-18 \leqslant k \leqslant 19$	
	$-7 \leq k \leq 7$		$-18 \le k \le 19$		
	$-15 \leq l \leq 15$	$-15 \leq l \leq 15$			
No. of measured reflections	5348		7869		
No. of independent reflections	1307		2276		
$\mu \text{ (cm}^{-1}) \text{ (for } \lambda K \alpha = 0.71073 \text{ A})$	453.14		443.62		
Limiting faces and distances (mm)	100	0.025	100	0.064	
From an arbitrary origin	100	0.025	100	0.064	
	010	0.052	010	0.021	
	010	0.052	010	0.021	
	001	0.027	001	0.018	
	001	0.027	001	0.018	
<i>R</i> merging factor	0.045		0.067		
Refinement					
Refined parameters/restraints	107/0		214/0		
Goodness-of-fit on F^2	1.120		1.080		
R_1 for all data	0.0316		0.0412		
wR_2 for all data	0.0874		0.0885		
Largest diffraction peak and hole($e \text{ Å}^{-3}$)	2.16/-2.79		2.00/-2.73		

 $R_1 = \sum \left(|F_{\rm o}| - |F_{\rm c}| \right) / \sum |F_{\rm o}|.$

 $\mathbf{w}R_2 = \left[\sum \mathbf{w}(F_o^2 - F_c^2)^2 / \sum \mathbf{w}(F_o^2)^2\right]^{1/2}.$

 $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ where a and b are refinable parameters and $P = (F_o^2 + 2F_c^2)/3$.

defined by Smith and Snyder [17] were $F_{20} = 36(0.013; 43)$ and 28(0.010; 72) for the α and β forms, respectively. The powder X-ray diffraction pattern data are reported in Tables 2 and 3, respectively.

The density, measured with an automated Micromeritics Accupyc 1330 helium pycnometer using a 1-cm³ cell, indicated Z = 4 formula per unit cell for both α and β forms ($\rho_{exp} = 5.86(2) \text{ g cm}^{-3}$, $\rho_{cal} = 5.85(2) \text{ g cm}^{-3}$ for α ; $\rho_{exp} = 5.79(2) \text{ g cm}^{-3}$, $\rho_{cal} = 5.73(1) \text{ g cm}^{-3}$ for β). The integral intensities were extracted from the

The integral intensities were extracted from the collected frames with the Bruker Saint Plus 6.02 software package [18] using a narrow-frame integration algorithm. A Gaussian-type absorption correction based on precise faces indexing was then applied using XPREP program [19] followed by SADABS [20] for additional corrections. The crystal structure of both compounds

were solved by direct methods using the SHELXTL software [19], which gave the position of U, Rb and V atoms. Oxygen positions were deduced from subsequent refinements and difference Fourier maps calculation. Both structures were refined on the basis of F^2 for all unique data, using the SHELXL program. Refinement of atomic positional parameters, anisotropic displacement parameters for U, V, Rb atoms, and isotropic displacement for O atoms yielded to final $R_1 = 0.0316$ and $wR_2 = 0.0874$ for 1307 independent reflections for α -Rb₆U₅V₂O₂₃ and $R_1 = 0.0412$, w $R_2 = 0.0885$ for 2276 independent reflections for β -Rb₆U₅V₂O₂₃. The atomic positions and equivalent isotropic displacement factors and anisotropic displacement parameters for metals are reported in Tables 4 and 5 for the α and in Tables 6 and 7 for the β form, respectively.

Table 2 Observed and calculated X-ray powder diagram $\alpha\text{-Rb}_6\text{U}_5\text{V}_2\text{O}_{23}$

hkl	2θ obs.	2θ cal.	Intensity %	h k l	2θ obs.	2θ cal.	Intensity %
20-2	13.079	13.045	80	710	28.814	28.804	90
11 - 1	14.053	14.079	5	222	29.975	29.968	8
400	14.730	14.695	16	22 - 3	31.491	31.481	13
202	16.178	16.154	12	513	32.355	32.366	4
112	18.833	18.824	5	314	32.874	32.895	23
402	21.760	21.745	6	42 - 3	33.019	33.014	7
510	22.295	22.281	17	912	35.215	35.199	21
312	22.611	22.583	11	60 - 6	39.832	39.849	12
60 - 2	22.734	22.713	6	912	40.932	40.921	12
20 - 4	24.840	24.821	15	116	41.915	41.932	14
020	25.107	25.070	15	530	42.512	42.530	19
004	25.550	25.561	24	80 - 6	43.042	43.029	19
021	25.896	25.885	35	531	43.747	43.759	32
40 - 4	26.271	26.263	75	111 - 4	45.067	45.055	16
22 - 1	26.516	26.502	20	102 - 3	45.726	45.766	7
313	27.425	27.426	37	31 - 7	46.054	46.035	18
512	27.902	27.899	100	730	46.539	46.539	8
71 - 1	28.110	28.101	40	62 - 6	47.631	47.660	15
22 - 2	28.384	28.360	78	731	47.911	47.950	11

Table 3 Observed and calculated X-ray powder diagram β -Rb₆U₅V₂O₂₃

hkl	2θ obs.	2θ calc.	Intensity %	hkl	2θ obs.	2θ cal.	Intensity %
002	7.082	7.079	17	214	29.482	29.487	19
013	12.371	12.351	21	127	30.801	30.786	29
020	12.583	12.570	37	028	31.342	31.343	5
101	12.853	12.866	18	037	31.483	31.494	7
021	13.081	13.062	23	224	31.524	31.516	5
110	13.852	13.863	10	231	31.633	31.626	8
022	14.452	14.440	22	144	31.754	31.744	8
11 - 2	15.570	15.556	8	233	33.262	33.280	5
023	16.500	16.488	6	145	33.600	33.588	28
025	21.822	21.815	15	13 - 8	36.711	36.730	5
115	22.650	22.643	7	30 - 5	41.846	41.837	6
026	24.852	24.848	5	31 - 5	42.362	42.349	26
125	25.140	25.160	57	0212	45.451	45.444	15
210	25.632	25.649	35	13-11	46.112	46.130	13
017	25.742	25.759	44	24 - 8	46.310	46.323	23
211	25.912	25.917	27	073	46.431	46.430	6
042	26.315	26.298	23	346	51.224	51.232	4
212	26.660	26.672	13	35 - 3	51.292	51.291	3
134	26.865	26.849	26	26 - 6	51.414	51.401	18
043	27.511	27.504	37	080	51.922	51.937	8
107	27.992	27.982	100	0214	52.944	52.950	7
140	28.214	28.226	17	40 - 4	53.111	53.109	4
036	28.632	28.641	63	33-9	54.182	54.187	20
135	28.947	28.957	39	360	54.810	54.808	21

a = 7.162(1) Å, b = 14.073(2) Å, c = 24.954(3) Å, $\beta = 90.27(1)$ Å, $F_{20} = 28(0.010;72)$.

3. Description of the structures and discussion

3.1. α -*Rb*₆*U*₅*V*₂*O*₂₃

Table 8 provides for α -Rb₆U₅V₂O₂₃ the most significant distances, angles and bond valence sums calculated using Brese and O'Keeffe's data [21] with

b = 0.37 Å except for U–O bonds where the coordination independent parameters ($R_{ij} = 2.051$ Å and b = 0.519 Å) were taken from Burns et al. [22].

The three independent uranium atoms U(1), U(2) and U(3) are bonded to two oxygen atoms at short distances, O(4) and O(5) for U(1), O(2) and O(3) for U(2), and two O(1) for U(3), respectively, forming nearly linear uranyl

5

ions, $U(1)O_2^{2^+}$, $U(2)O_2^{2^+}$, and $U(3)O_2^{2^+}$, Fig. 1. The three uranyl ions are surrounded in the equatorial plane by a pentagonal environment of oxygen atoms thus all coordination polyhedra of U atoms are pentagonal bipyramids UO7. The uranyl-ion bond lengths range from 1.797(13) to 1.854(14) Å with an average value of 1.834 Å. The remaining equatorial oxygen ligands show significant variations with U-O distances ranging from 2.219(12) to 2.406(13) Å for U(1)O₇, from 2.156(7) to 2.762(12) A for U(2)O₇ and from 2.230(12) to 2.800(21)Å for U(3)O₇, respectively. However, the average values, 2.337, 2.340, 2.375 Å for U(1), U(2), U(3) polyhedra, respectively, are in good agreement with the average bond length of 2.37(9) Å calculated for uranyl polyhedra of numerous well-refined structures [22]. The UO_7 polyhedra share edges to form $[(UO_2)_5O_{11}]_{\infty}$ infinite ribbons three uranium polyhedra width parallel to the $(10\overline{1})$ plane and running along *b*-axis. Vanadium is tetrahedrally coordinated with V–O distances ranging from 1.631(15) to 1.804(13) Å. Two

Table 4 Atomic positions, isotropic thermal factors of α -Rb₆ (UO₂)₅(VO₄)₂O₅

Table 5

Atom	Site.	X	у	Ζ	$U_{ m iso}, U_{ m eq}*$
U1	8 <i>f</i>	0.14618(2)	0.03641(9)	0.88365(4)	$0.0069(2)^*$
U2	8f	0.08314(2)	-0.44550(9)	0.82897(4)	0.0068(2)*
U3	4e	0	0.09559(9)	3/4	$0.0081(3)^*$
V	8 <i>f</i>	0.28199(9)	-0.0479(4)	1.0694(2)	0.0075(6)*
Rb1	8f	0.03557(7)	0.2467(2)	1.05248(9)	$0.0184(4)^*$
Rb2	8 <i>f</i>	0.13083(8)	0.2532(2)	0.61466(9)	0.0185(5)*
Rb3	8 <i>f</i>	0.29099(8)	0.2199(3)	0.82973(9)	0.0207(5)*
01	8f	0.0232(5)	0.1024(9)	0.6375(8)	0.013(3)
O2	8 <i>f</i>	0.0626(5)	-0.4554(9)	0.9446(9)	0.016(3)
O3	8f	0.1083(5)	-0.4288(9)	0.7182(9)	0.016(3)
O4	8 <i>f</i>	0.1297(5)	0.0690(9)	0.9989(9)	0.018(3)
O5	8f	0.1651(5)	0.0087(9)	0.7714(8)	0.015(3)
O6	8f	0.3375(5)	-0.2159(9)	1.0800(8)	0.015(3)
O 7	8 <i>f</i>	-0.0646(5)	-0.1286(9)	0.6815(8)	0.014(3)
O 8	8 <i>f</i>	0.2432(5)	-0.0042(9)	0.9561(9)	0.017(3)
O9	8 <i>f</i>	0.0792(5)	0.2380(9)	0.8205(8)	0.018(3)
O10	8 <i>f</i>	0.3202(5)	0.1493(9)	1.1107(9)	0.018(3)
011	8 <i>f</i>	0.2417(5)	-0.1004(9)	1.1399(9)	0.019(3)
O12	4 <i>e</i>	0	-0.5100(9)	3/4	0.023(4)

Note. The U_{eq} values are defined by $U_{eq} = \frac{1}{3} \left(\sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j \right)$.

1 4010 0					
Thermal anisotropic	factors for metals	(U, V, Rb) of α -Rb ₆ ($(UO_2)_5(VO_4)_2O_5$	$(Å^2)$

 $[(UO_2)_5O_{11}]_{\infty}$ ribbons are linked together by VO₄ tetrahedra. Each VO_4 tetrahedron shares an O(6)-O(10) edge with an $U(2)O_7$ pentagonal bipyramid of one ribbon and an O(8) corner with an U(1)O₇ bipyramid of the neighboring ribbon. The VO₄ tetrahedron is highly distorted, the shortest V-O distance involving the non-shared oxygen atom. Uranyl pentagonal bipyramids and vanadium tetrahedra form planar layers parallel to the $(10\overline{1})$ plane. Fig. 1 shows a representation of a layer in this plane. The layers are stacked along the *c*-axis. Fig. 2 represents an orthogonal projection of the structure in the (010) plane. Rubidium ions lie in the interlayer space and ensure the cohesion between the layers. Except the Rb(3)–O(8) bond, all the oxygen atoms participating to the rubidium coordination polyhedra are uranyl oxygen or the non-shared O(11) atom of the VO₄ tetrahedron.

3.2. β -*Rb*₆*U*₅*V*₂*O*₂₃

Table 9 provides for β -Rb₆U₅V₂O₂₃ the most significant distances, angles and bond valence sums.

Each of the five independent uranium atoms is bonded to two oxygen atoms at short distance, O(1)and O(5) for U(1), O(8) and O(2) for U(2), O(11) and O(3) for U(3), O(4) and O(9) for U(4), O(20) and O(10) for U(5), respectively, forming nearly linear uranyl ions UO_2^{2+} . The uranyl-ion bond lengths range from 1.746(13) to 1.867(14) Å with an average value of 1.820 Å. As excepted for U(3), uranyl ions are surrounded in the equatorial plane by a pentagonal environment of oxygen atoms; thus the coordination polyhedra of these uranium atoms are pentagonal bipyramids. The equatorial oxygen ligands show significant variations with U-O distances ranging from 2.106(22) to 2.642(24)Å, however the average values, 2.355, 2.338, 2.309 and 2.338 Å for U(1), U(2), U(4) and U(5) polyhedra, respectively, are in good agreement with the average bond length of 2.37(9) Å [22]. For the U(3) atom, the coordination polyhedron is a distorted octahedron with two oxygen atoms at shorter distance belonging to the uranyl $U(3)O_2^{2^+}$ ion and four oxygen atoms at longer distances (ranging from 2.251(23) to

i nermai an	(U, V, K) = (U,									
Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}				
U1	0.0082(4)	0.0111(4)	0.0026(4)	0.0009(3)	0.0035(3)	0.0005(3)				
U2	0.0074(4)	0.0112(4)	0.0030(4)	-0.0009(3)	0.0039(3)	-0.0005(2)				
U3	0.0075(5)	0.0153(5)	0.0028(5)	0.00000	0.0039(4)	0.00000				
V	0.0050(14)	0.0113(15)	0.0074(16)	0.0020(12)	0.0037(12)	0.0002(12)				
Rb1	0.021(1)	0.0205(10)	0.0161(10)	0.0000(8)	0.0093(8)	0.0017(7)				
Rb2	0.027(1)	0.0199(10)	0.0100(9)	0.0037(8)	0.0071(8)	0.0003(7)				
Rb3	0.026(1)	0.0227(10)	0.0184(10)	0.0013(8)	0.0155(8)	-0.0001(8)				

Note. The anisotropic displacement factor exponent takes the form $-2\pi^2 [h^2 a *^2 U_{11} + \dots + 2hka * b * U_{12}]$.

Table 6

2.310(21) Å) in the equatorial plane, forming a trapezoid, the distance to the fifth equatorial oxygen atom O(23) (3.31 Å) is too long to be considered as a bond.

Atomic positions, isotropic thermal factors (Å²) of β -Rb₆ (UO₂)₅ (VO₄)₂O₅

Atom	Site	x	у	Ζ	$U_{ m iso}, U_{ m eq}*$
U1	4 <i>e</i>	0.82487(9)	0.22872(9)	0.04327(5)	0.0097(3)*
U2	4e	0.82249(9)	0.31502(9)	-0.11968(5)	$0.0110(3)^*$
U3	4e	0.33905(9)	0.27449(9)	-0.03742(5)	0.0116(3)*
U4	4e	1.31574(9)	0.19707(9)	0.10343(5)	0.0104(3)*
U5	4e	1.31324(9)	0.33203(9)	-0.18011(5)	0.0117(3)*
V1	4e	0.8228(7)	0.1408(4)	0.1671(2)	0.015(1)*
V2	4e	0.8129(7)	0.3883(4)	-0.2441(2)	$0.007(1)^*$
Rb1	4e	0.4937(4)	0.5335(2)	-0.0808(1)	0.0196(8)*
Rb2	4e	0.0069(5)	0.0586(3)	-0.0770(1)	0.0235(8)*
Rb3	2d	1.5	0	0	0.0203(9)*
Rb4	2c	0	1/2	0	0.0248(9)*
Rb5	4e	1.4829(5)	-0.0562(3)	0.1533(1)	$0.0240(8)^{*}$
Rb6	4e	0.9847(5)	0.3972(3)	0.1702(1)	0.0378(9)*
Rb7	4e	0.9971(5)	0.1327(3)	-0.2497(2)	0.0345(9)*
01	4e	0.825(3)	0.1020(9)	0.0233(8)	0.008(5)
O2	4e	0.831(3)	0.4433(9)	-0.1050(9)	0.019(6)
O3	4e	0.338(3)	0.3972(9)	-0.0145(8)	0.008(5)
O4	4e	1.295(3)	0.0738(9)	0.0849(9)	0.019(6)
O5	4e	0.824(3)	0.3528(9)	0.0696(9)	0.021(6)
O6	4e	1.140(3)	0.3115(9)	-0.1042(8)	0.014(5)
O 7	4e	0.514(3)	0.3242(9)	-0.1097(7)	0.007(4)
O8	4e	0.816(3)	0.1906(9)	-0.1400(8)	0.015(5)
O9	4e	1.324(3)	0.3202(9)	0.1282(9)	0.020(5)
O10	4e	1.311(3)	0.4598(9)	-0.1763(9)	0.020(5)
O11	4e	0.350(3)	0.1522(9)	-0.0589(9)	0.027(6)
O12	4e	0.633(3)	0.1634(9)	0.1256(9)	0.019(5)
O13	4e	0.812(3)	0.5055(9)	-0.2481(9)	0.025(6)
O14	4e	0.853(3)	0.0215(9)	0.1728(9)	0.021(6)
O15	4e	0.631(3)	0.3450(9)	-0.2067(9)	0.024(6)
O16	4e	1.140(3)	0.2375(9)	0.0290(8)	0.016(5)
O17	4e	0.510(3)	0.2298(9)	0.0358(9)	0.020(5)
O18	4e	0.996(3)	0.3448(9)	-0.2001(8)	0.013(5)
O19	4e	1.006(4)	0.1936(9)	0.1254(8)	0.036(7)
O20	4e	1.304(3)	0.2088(9)	-0.1877(9)	0.024(6)
O21	4e	0.818(3)	0.3433(9)	-0.3065(9)	0.023(6)
O22	4 <i>e</i>	0.803(3)	0.1920(9)	0.2239(9)	0.029(6)
O23	4 <i>e</i>	0.801(3)	0.2760(9)	-0.0365(9)	0.033(6)

Table 7

Thermal anisotropic factors for metals (U, V, Rb) of β -Rb₆ (UO₂)₅(VO₄)₂O₅ (Å²)

The UO_7 and UO_6 polyhedra share edges to form $[(UO_2)_5O_{11}]_{\infty}$ infinite ribbons three uranium polyhedra width. Both independent vanadium atoms V(1) and V(2)are tetrahedrally coordinated with V-O distances ranging from 1.598(22) to 1.836(26) Å for V(1) and from 1.653(14) to 1.814(22) Å for V(2). Two consecutive $[(UO_2)_5O_{11}]_{\infty}$ ribbons are connected by VO₄ tetrahedra. Each tetrahedron shares an edge with one UO_7 pentagonal bipyramid of one ribbon and a vertex with an UO₇ polyhedron of the consecutive ribbon. Corrugated layers parallel to the (010) plane are formed, Fig. 3. The seven independent rubidium ions occupy the interlayer space and ensure the cohesion of the structure, Fig. 4. All the Rb–O distances lower than 3.0 Å involve uranyl oxygen or the non-shared O(13) and O(14) atoms of the VO₄ tetrahedra.

3.3. Comparison between α and β - $Rb_6U_5V_2O_{23}$ and other uranyl vanadates

To compare the structures of the two forms of $Rb_6U_5V_2O_{23}$ with those of other uranyl-containing compounds it is interesting to consider the infinite zig-zag chains $(UO_5)_{\infty}$ formed by sharing opposite equatorial edges of UO₇ pentagonal bipyramids. These chains, running along the b-axis, result from edgesharing between $U(1)O_7$ and $U(2)O_7$ entities in α -Rb₆U₅V₂O₂₃. In the β form two kinds of chains are formed from edge-sharing between $U(1)O_7$ and $U(4)O_7$ entities and between $U(2)O_7$ and $U(5)O_7$, respectively. These chains are similar to those found in well-known compounds such α -U₃O₈ [23], UVO₅ [4,24,25], USbO₅ [26], UMo_2O_8 [27], umohoite $UMoO_6 \cdot 2H_2O$ [28], uranyl silicate minerals such as weeksite [29] and other recently studied compounds like $U_2P_2O_{10}$ [30], uranyl divanadate (UO₂)₂V₂O₇ [31,32], hydrated uranyl orthovanadate $(UO_2)_3(VO_4)_2 \cdot 5H_2O$ [16] and orthophosphate $(UO_2)_3(PO_4)_2 \cdot 4H_2O$ [33], $M_6U_5V_2O_{23}$ (M = K, Na) [14]. While in the majority of the cases, chains are connected

	1		0 (2) 5 (4) 2 5 (,		
Atom	U_{11}	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
U1	0.0068(6)	0.0134(7)	0.0090(6)	0.0005(5)	-0.0011(5)	-0.0001(6)
U2	0.0063(6)	0.0136(7)	0.0131(6)	-0.0001(5)	0.0000(5)	0.0020(6)
U3	0.0131(6)	0.0134(7)	0.0082(6)	-0.0008(5)	-0.0009(5)	0.0016(5)
U4	0.0074(6)	0.0116(7)	0.0121(6)	-0.0001(5)	0.0010(5)	0.0016(5)
U5	0.0116(6)	0.0138(7)	0.0097(6)	-0.0001(5)	-0.0009(5)	0.0022(5)
V1	0.002(3)	0.029(4)	0.016(3)	-0.001(2)	0.000(2)	0.015(3)
V2	0.003(3)	0.008(3)	0.009(3)	-0.001(2)	0.000(2)	0.001(2)
Rb1	0.018(2)	0.019(2)	0.022(2)	-0.001(1)	0.002(1)	0.001(1)
Rb2	0.019(2)	0.024(2)	0.028(2)	0.001(1)	-0.002(1)	0.001(1)
Rb3	0.020(3)	0.023(3)	0.018(2)	-0.002(2)	-0.001(2)	-0.002(2)
Rb4	0.018(3)	0.033(3)	0.024(3)	0.003(2)	0.003(2)	0.005(2)
Rb5	0.026(2)	0.022(2)	0.024(2)	0.004(1)	-0.0022(15)	0.001(1)
Rb6	0.025(2)	0.050(3)	0.039(2)	0.009(2)	-0.008(2)	-0.025(2)
Rb7	0.027(2)	0.040(3)	0.037(2)	-0.009(2)	-0.002(1)	-0.009(2)

Table 8 Bond distances (Å), angles (deg) and bond valences S_{ii} in α -Rb₆(UO₂)₅(VO₄)₂O₅

U environment							
	S_{ij}						
U1–O5 1.79	97(13) 1.632						
U1–O4 1.81	15(14) 1.576	O5–U1–O4	177.7(5)				
U1–O9 2.21	19(12) 0.723	O5–U1–O9	92.1(4)				
U1–O7 ⁱ 2.33	36(12) 0.577	$05-U1-07^{i}_{}$	88.6(4)				
U1–O6 ⁿ 2.34	48(12) 0.564	O5–U1–O6 ⁿ	91.4(3)				
U1–O10 ^m 2.37	77(12) 0.534	O5–U1–O10 ¹¹¹	88.1(4)				
U1–O8 2.40	06(13) 0.505	O5–U1–O8	85.6(5)				
$\sum S_{ij}$	6.110						
U2-O3 1.85	50(14) 1 473						
$U_{2}=0.02$ 1.85	54(14) 1.459	03-112-02	176.0(5)				
$U_2 = 012$ 1.05	56(7) 0.815	03 - U2 - 012	92 3(4)				
$U_2 = O_1^{V_1}$ 2.15	51(12) 0.680	$O_{3}-U_{2}-O_{9}^{vi}$	92.1(3)				
$U_2 = 07^i$ 2.23	94(12) 0.626	$03 - U2 - 07^{i}$	89 2(3)				
$U_2 = 07$ 2.29	84(12) 0.526	$03 U2 06^{ii}$	0.2(3)				
$U_2 = 00^{ii}$ 2.50	67(12) 0.520	$O_{3} U_{2} O_{10}^{ii}$	91.9(4) 81.6(4)				
$\sum_{n=1}^{\infty} c_n$	5.833	03-02-010	81.0(4)				
	5.855						
U3–O1 1.84	44(13) 1.493						
U3–O1 ⁱ 1.84	44(13) 1.493	O1–U3–O1 ⁱ	177.0(5)				
U3–O9 ⁱ 2.23	30(12) 0.708	O1–U3–O9 ⁱ	91.1(4)				
U3–O9 2.23	30(12) 0.708	O1-U3-O9	87.6(4)				
U3–O7 2.30	08(12) 0.609	O1-U3-O7	88.7(4)				
U3–O7 ⁱ 2.30	08(12) 0.609	O1–U3–O7 ⁱ	93.4(4)				
U3–O12 ^v 2.80	00(21) 0.237	O1-U3-O12 ^v	88.5(2)				
$\sum S_{ij}$	5.857						
V tetrahedral environment							
V-O11 163	31(15) 1.592	011-V-08	110.0(6)				
V_08 1.71	10(13) 1.392	011 - V - 010	110.0(0)				
V-08 1.71 V-010 1.71	16(12) 1.260	011 - V - 010	110.1(5) 111.7(5)				
V 06 180	10(12) 1.203 04(13) 1.000	08 V 010	108.7(5)				
$\sum S_{ij}$	5 14	08-V-010	116 5(5)				
	5.14	08-1-00	110.5(5)				
Rb environment	S_{ij}			S_{ij}			S_{ij}
Rb1–O2 ^v 2.79	99(11) 0.236	Rb2–O5	2.809(12)	0.229	Rb3–O11 ^{xi}	2.839(16)	0.211
Rb1–O1 ^{iv} 2.81	13(8) 0.226	Rb2–O4 ^{xi}	2.825(9)	0.220	Rb3–O5 ^{xii}	2.877(12)	0.191
Rb1–O2 ^{vii} 2.86	66(12) 0.196	Rb2–O3 ^v	2.833(10)	0.214	Rb3–O8	2.878(14)	0.190
Rb1–O4 2.92	22(14) 0.168	Rb2–O11 ^{xi}	2.905(12)	0.176	Rb3–O11 ⁱⁱⁱ	2.884(8)	0.187
Rb1–O3 ^{iv} 2.92	24(18) 0.168	Rb2–O11 ^{xi}	2.905(12)	0.146	Rb3–O3 ^{xii}	2.950(14)	0.156
Rb1–O1 ⁱ 2.95	54(17) 0.154	Rb2–O1	2.975(13)	0.141	Rb3–O4 ⁱⁱⁱ	3.142(18)	0.093
Rb1–O7 ^{iv} 3.54	47(18) 0.031	Rb2–O2 ^{xi}	2.987(17)	0.106	Rb3-O10 ⁱⁱⁱ	3.224(15)	0.075
$\sum S_{ij}$	1.179			1.267			1.103

Symmetry codes: (i) -x, y, 1.5 - z; (ii) 0.5 - x, -0.5 - y, 2 - z; (iii) 0.5 - x, 0.5 - y, 2 - z; (iv) x, -y, 0.5 + z; (v) x, 1 + y, z; (vi) x, -1 + y, z; (vii) -x, -y, 2 - z; (viii) -x, 1 + y, 1.5 - z; (ix) 0.5 - x, -0.5 + y, 1.5 - z; (x) -x, 1 - y, 2 - z; (xi) x, -y, -0.5 + z; (xii) 0.5 - x, 0.5 + y, 1.5 - z.

by polyhedra such as VO₄ tetrahedra in (UO₂)₃ (VO₄)₂·5H₂O [16], VO₅ square pyramids in UVO₅ [4,24,25], SbO₆ octahedra in USbO₅ [26] or distorted MoO₅(OH) in umohoite [28], ReO₃-type slabs of twooctahedra wide in UMo₂O₈ [27], divanadate groups in U₂V₂O₁₁ [31,32], silicate tetrahedra chains in weeksite [29], in α and β forms of Rb₆U₅V₂O₂₃ they are connected by corner sharing to form double chains similar to those found in the series $M_6U_5V_2O_{23}$ (M = K, Na) [14]. Within the double chains very distorted hexagonal rings better described as a quadrangular site flanked by two triangular sites are created. The quadrangular site is occupied by a U atom when the triangular sites are empties. The coordination of the "inserted" U atom is related to the distortion of the oxygen six-membered cycle. The distortion can be measured by the angle between the two O–O edges labeled O1–O2 in Figs. 5 and 6 and Table 10. In K₆U₅V₂O₂₃ the quadrangular site is perfectly rectangular, the U atom occupies the center of the rectangle with four relatively short U–O distances (2.28(2)2× and 2.29(2)2× Å), the two other U–O distances are very long (3.568(17) Å), so the

Fig. 1. Projection of the $(U_5V_2O_{23})^{6-}$ layer of α -Rb₆ $U_5V_2O_{23}$ on $(10\overline{1})$ plane showing the three polyhedra width ribbons built from edge-shared UO₇ pentagonal bipyramids connected by VO₄ tetrahedra.

Fig. 2. Projection of the crystal structure of α -Rb₆U₅V₂O₂₃ on (010) plane showing the planar (U₅V₂O₂₃)⁶⁻ layers and interlayer Rb atoms.

coordination of the U atom is unambiguously octahedral. For the other $M_6U_5V_2O_{23}$ (M=Na, Rb) compounds the deformation of the $(UO_5)_{\infty}$ chains creates a trapezium site rather than rectangular (Fig. 5) and leads to the coming together of an oxygen atom of the triangular site (Table 10) leading to a modification of the uranium environment from a distorted octahedron to a pentagonal bipyramid. This fact is illustrated well in the structures of the α and β forms of Rb₆U₅V₂O₂₃, the deformation of chains is more important in the α form, the environment of the uranium U(3) is a pentagonal bipyramid while in the β phase it is rather an octahedron. The more important deformation of the chains is observed in αU_3O_8 [25] with an angle between the O–O edges of 24.98°, the distance of the fifth oxygen atom in the equatorial plane of the uranium coordination being 2.442(21) Å. In this compound the linkage between (UO₅)_{∞} chains is not limited to two chains and

Table 9 Bond distances (Å), angles (deg) and bond valences S_{ij} in β -Rb₆(UO₂)₅(VO₄)₂O₅

Table 9 (continued)
-----------	------------

$RD_6(UU_2)_5(V_1)$	$(0_4)_2 0_5$			
U environme	ent	~		
U1-O1 U1-O5 U1-O23 U1-O17 U1-O16 U1-O19 U1-O12 $\sum S_{ij}$	1.852(13) 1.867(14) 2.106(22) 2.263(22) 2.290(22) 2.472(25) 2.642(24)	S_{ij} 1.473 1.417 0.910 0.669 0.631 0.446 0.321 5.867	O1-U1-O5 O1-U1-O23 O1-U1-O17 O1-U1-O16 O1-U1-O19 O1-U1-O12	175.0(6) 92.9(7) 89.2(7) 90.5(7) 91.7(7) 82.8(6)
U2-08 U2-02 U2-023 U2-07 U2-06 U2-018 U2-015 $\sum S_{ij}$	1.824(13) 1.844(13) 2.154(22) 2.229(22) 2.306(22) 2.402(23) 2.599(25)	S_{ij} 1.561 1.502 0.811 0.710 0.607 0.510 0.347 6.048	08-U2-02 08-U2-023 08-U2-07 08-U2-06 08-U2-018 08-U2-015	175.30(58) 91.22(70) 93.59(74) 92.87(75) 87.01(71) 84.88(70)
U3-011 U3-03 U3-06 ⁱ U3-016 ⁱ U3-017 U3-07 $\sum S_{ij}$	1.805(14) 1.820(14) 2.251(23) 2.252(23) 2.284(24) 2.310(21)	<i>S_{ij}</i> 1.591 1.561 0.682 0.682 0.631 0.607 5.754	011-U3-03 011-U3-06 ⁱ 011-U3-016 ⁱ 011-U3-017 011-U3-07	177.5(6) 91.7(7) 91.5(7) 87.2(7) 91.9(7)
U4-O4 U4-O9 U4-O17 ⁱⁱ U4-O19 U4-O16 U4-O12 ⁱⁱ $\sum S_{ij}$	1.802(14) 1.841(14) 2.240(24 2.288(29) 2.311(22) 2.319(22) 2.385(22)	S_{ij} 1.622 1.502 0.695 0.631 0.607 0.596 0.520 6.173	04-U4-09 04-U4-017 ⁱⁱ 04-U4-019 04-U4-016 04-U4-021 ⁱⁱⁱ 04-U4-012 ⁱⁱ	174.5(6) 93.2(7) 87.8(8) 89.2(7) 90.7(7) 86.9(7)
U5-O20 U5-O10 U5-O7 ⁱⁱ U5-O6 U5-O18 U5-O15 ⁱⁱ $\sum S_{ij}$	1.746(13) 1.801(13) 2.269(22) 2.288(23) 2.332(22) 2.381(22)	1.786 1.622 0.657 0.631 0.584 0.531 6.302	O20-U5-O10 O20-U5-O7 ⁱⁱ O20-U5-O6 O20-U5-O18 O20-U5-O15 ⁱⁱ	175.8(6) 93.4(8) 86.8(8) 91.0(8) 94.7(8)
V environme	nt	c		
V1–O22 V1–O14 V1–O12 V1–O19 $\sum S_{ij}$	1.598(22) 1.699(14) 1.735(24) 1.836(26)	5.ij 1.731 1.321 1.218 0.905 5.175	O22-V1-O14 O22-V1-O12 O14-V1-O12 O22-V1-O19 O14-V1-O19	112.5(8) 112.0(9) 109.3(8) 112.8(9) 110.9(7)
V2–O13 V2–O21 V2–O15 V2–O18 $\sum S_{ij}$	1.653(14) 1.682(22) 1.718(23) 1.814(22)	1.512 1.394 1.251 0.955 5.112	O13-V2-O21 O13-V2-O15 O21-V2-O15 O13-V2-O18 O21-V2-O18	108.7(8) 112.6(8) 112.9(9) 112.1(8) 114.5 (9)

Rb environme	ent				
		S_{ij}			S_{ij}
Rb1–O3	2.771(19)	0.299	Rb2–O8 ⁱ	2.789(19)	0.241
Rb1–O2	2.798(21)	0.254	Rb2011	2.824(21)	0.222
Rb1–O5 ^{ix}	2.797(19)	0.241	Rb2–O14 ^v	2.832(23)	0.216
Rb1–O3 ^{ix}	2.836(22)	0.234	Rb2–O4 ^v	2.861(19)	0.199
Rb1–O10 ⁱ	2.907(24)	0.210	Rb2–O1 ^v	2.889(18)	0.184
Rb1–O7	3.037(13)	0.179	Rb2–O1 ⁱ	2.893(23)	0.184
Rb1–O17 ^{ix}	3.517(14)	0.122	Rb2–O23 ⁱ	3.547(17)	0.032
$\sum S_{ij}$		1.539	$\sum S_{ij}$		1.278
		S_{ij}			S_{ij}
Rb3–O4 ^x	2.785(24)	0.241	Rb4–O3 ^{xii}	2.845(20)	0.210
Rb3–O4	2.785(24)	0.241	Rb4–O3	2.845(20)	0.210
Rb3–O1 ⁱⁱ	2.795(20)	0.241	Rb4–O5 ^{ix}	2.987(20)	0.140
Rb3–O1 ^{xi}	2.795(20)	0.241	Rb4vO5 ⁱ	2.987(20)	0.140
Rb3–O11 ^{xi}	2.810(18)	0.228	Rb4–O2 ^{ix}	2.991(24)	0.140
Rb3–O11 ⁱⁱ	2.810(18)	0.228	Rb4–O2 ⁱ	2.991(24)	0.140
Rb3–O17 ⁱⁱ	3.357(14)	0.052	Rb4–O23 ^{ix}	3.577(16)	0.028
$\sum S_{ii}$		1.472	$\sum S_{ii}$		1.008
_ ,					
		S_{ii}			S_{ii}
Rb5–O20 ^x	2.770(18)	0.254	Rb6-O13 ^{vii}	2.785(23)	0.241
Rb5–O4	2.839(21)	0.210	Rb6–O5	2.828(24)	0.216
Rb5–O13 ⁱⁱⁱ	2.845(24)	0.210	Rb6–O9	2.864(23)	0.199
Rb5–O8 ^{xi}	2.876(19)	0.194	Rb6–O10 ^{vii}	2.927(18)	0.165
Rb5–O14 ⁱⁱ	2.907(21)	0.174	Rb6–O2 ^{vii}	3.074(19)	0.110
Rb5–O11 ^{xi}	2.973(23)	0.148	Rb6019	3.081(15)	0.110
Rb5–O12 ⁱⁱ	3.347(15)	0.053	Rb6022	3.443(17)	0.042
$\sum S_{ii}$		1.292	$\sum S_{ii}$		1.083
2,			<u> </u>		
		S_{ii}			
Rb7–O13 ^{xiv}	2.848(19)	0.205			
Rb7-O20	2.890(24)	0.184			
Rb7–O14 ^{xi}	3.088(20)	0.107			
Rb7–O8	3.143(23)	0.093			
Rb7–O18	3.233(15)	0.073			
Rb7–O9 ^{vi}	3.352(25)	0.053			
Rb7–O10 ^{xv}	3.354(20)	0.053			
Rb7–O22 ^{iv}	3.367(18)	0.050			
Rb7-O21	3.526(17)	0.033			
$\sum S_{ii}$	· · · ·	0.851			
~ ~			215 A		
Symmetry c	odes: $(1) -$	1 + x, y, z	z; (11) $1 + x, y$	y, z; (111) $0.5 + x$,0.5 -
y, 0.5 + z; (1V	0.5 + x, 0.	5 - y, -	0.5 + z; (v) 1 -	x, -y, -z; (V1)	-0.5 +
x, 0.5 - y, -0	1.3 + z; (V11)	2 - x, 1	-y, -z; (V111)	1.5 - x, 0.5 + y, -	-0.5 -
z; (1x) $1-z$	x, 1-y, -z;	(x) 3 ·	-x, -y, -z; (x	1) $2 - x, -y, -z$; (X11)
-r - v - 7	·· (viii) _0	$r \rightarrow \pm r $	$1 > - v = 0 > + \pi$	$(x_{1}y) = 15 - y$	$-0.5 \pm$

 $\begin{array}{l} x, 0.5-y, -0.5+z; \ (\text{vii})\ 2-x, 1-y, -z; \ (\text{viii})\ 1.5-x, 0.5+y, -0.5-z; \\ (\text{ix})\ 1-x, 1-y, -z; \ (\text{x})\ 3-x, -y, -z; \ (\text{xi})\ 2-x, -y, -z; \ (\text{xii}) \\ -x, 1-y, -z; \ (\text{xiii})\ -0.5+x, 0.5-y, 0.5+z; \ (\text{xiv})\ 1.5-x, -0.5+y, \\ y, -0.5-z; \ (\text{xv})\ 2.5-x, -0.5+y, -0.5-z; \ (\text{xvi})\ 2.5-x, 0.5+y, \\ y, -0.5-z. \end{array}$

leads to bidimensional sheets. The same bidimensional arrangement of zig-zag chains is obtained in $M_7 U_8 V_2 O_{32}Cl M = Rb$, Cs [15], some of the shared vertices between uranium pentagonal bipyramids being replaced by chlorine atoms leading to two kinds of distorted hexagonal sites O₆ and O₅Cl, respectively. The quadrangular sites of the O₅Cl rings are occupied by U atoms in distorted octahedral environment, astonishingly, for the O₆ rings the rectangular sites are empty while one-half of the triangular sites are occupied by V atoms.

Fig. 3. Projection of the $(U_5V_2O_{23})^{6-}$ layer of β -Rb₆ $U_5V_2O_{23}$ on (010) plane showing the connection of edge-shared UO₇ pentagonal bipyramids by U(3)O₆ distorted octahedra and by O(23) atoms forming $[(UO_2)_5O_{11}]_{\infty}$ ribbons connected together by VO₄ tetrahedra.

Fig. 4. The crystal structure of β -Rb₆U₅V₂O₂₃ projected along [100] showing parallel corrugated layers.

Another important difference between $M_6 U_5 V_2 O_{23}$ (M = Na, K, β -Rb) and α -Rb₆U₅V₂O₂₃ concerns the type of connection of ribbons by VO₄ tetrahedra. In the first compounds, the V–O bond with the nonshared oxygen of tetrahedra connecting two consecutive ribbons are all directed towards the same interspace leading to an angle of about 40° between two consecutive ribbons. The rows of tetrahedra parallel to the [100] direction, "tip up" and "tip down", alternate leading to corrugated layers, the wave being parallel to the [001] direction. In contrast, in α -Rb₆U₅V₂O₂₃, the tetrahedra "tip up" and "tip down" alternate along a row parallel to the [010] direction, leading to planar layers. This reason seems valid not only for (U₅V₂O₂₃) layers but also for [UO₂(*X*O₄)] layers found in (UO₂)₃(*X*O₄)₂ · *x*H₂O with *X*=P, V [33,16]. The layers are plane and apical oxygen atoms of *X*O₄ tetrahedra are alternatively pointing in both sides of the layer in each row linking two parallel (UO₅)_∞ chains.

Fig. 5. Distortion of the O_6 rings formed between two oxygen-shared (UO₅)_{∞} chains from $K_6U_5V_2O_{23}$ to α -U₃O₈.

Fig. 6. High-temperature X-ray diffraction pattern of α -Rb₆U₅V₂O₂₃ showing a transition to the β form at about 870°C.

Table 10 Some characteristic distances and angles for the U atom occupying the O_6 ring between two connected (UO₅) chains

Compound	dO ₃ -O' ₃ (Å)	Angle (deg) O_1O_2 – $O'_1O'_2$	dU–O ₃ (Å)	<i>d</i> U–O' ₃ (Å)
K ₆ U ₅ V ₂ O ₂₃	7.135(22)	0.000	3.568(18)	3.568(18)
$Na_6U_5V_2O_{23}$	7.050(22)	6.30(1)	3.096(20)	4.007(21)
α -Rb ₆ U ₅ V ₂ O ₂₃	7.163(24)	8.12(1)	3.309(22)	3.855(23)
α -Rb ₆ U ₅ V ₂ O ₂₃	7.099(23)	13.48(1)	2.800(21)	4.299(22)
α-U ₃ O ₈	6.710(23)	24.98(1)	2.442(21)	4.268(21)

3.4. Phase transition

Thermal differential analysis performed on both α and β forms did not allow to evidence a transition between them. On the opposite, a non-reversible α to β transition is evidenced on a high-temperature X-ray diffraction pattern obtained with a Guinier–Lenné focusing camera at about 870°C, Fig. 6. This transition involves the rotation of half of the tetrahedra and is accompanied by a slight increase of the unit-cell volume.

4. Conclusion

The compound $Rb_6U_5V_2O_{23}$ exhibits a phase transition between α and β forms at about 870°C.

Crystal growth below and above this transition allowed us to prepare single crystals of the two varieties. Both structures contains sheets of uranyl pentagonal bipyramids and VO₄ tetrahedra, with composition $(U_5V_2O_{23})^{6-}$. Rb ions occupy the interlayers. The main difference between the two structures concerns the VO₄ orientation which leads to flat and corrugated layers in the α and β forms, respectively. As a consequence the $(U_2O_9)_{\infty}$ ribbons formed from two $(UO_5)_{\infty}$ chains are more distorted in the α form leading for the U atoms occupying the holes of the ribbons to a pentagonal bipyramid coordination in the α form rather than distorted octahedron in the β form. The β form is very similar to the other $M_6U_5V_2O_{23}$ compounds with M = Na, K.

References

- [1] P.B. Barton, Am. Mineral. 43 (1958) 799.
- [2] M. Saadi, Ph.D. Dissertation, Université des Sciences et Technologies de Lille, France, Novembre 1994.
- [3] D.E. Appleman, H.T. Evans, J. Am. Mineral. 50 (1965) 825.
- [4] P.G. Dickens, C.P. Stuttard, R.G.J. Ball, A.V. Powell, S. Hull, S. Patat, J. Mater. Chem. 2 (1992) 161.
- [5] F. Abraham, C. Dion, M. Saadi, J. Mater. Chem. 3 (5) (1993) 459.
- [6] I.G. Zhil'tsova, S.A. Perlina, E.M. Shmariouich, Litol. Polezn. Iskop. 5 (1989) 54.
- [7] F. Cesbron, Bull. Soc. Fr. Mineral. Cristallogr. 93 (1970) 320.
- [8] F. Cesbron, Thèse Paris, 1970.
- [9] J. Borene, F. Cesbron, Bull. Soc. Fr. Mineral. Cristallogr. 93 (1970) 426.
- [10] I. Duribreux, C. Dion, F. Abraham, M. Saadi, J. Solid State Chem. 146 (1999) 258.
- [11] A.M. Chippindale, S.J. Crennell, P.G. Dickens, J. Mater. Chem. 3 (1993) 33.
- [12] K.J. Hilke, U.G. Brauckmann, G. Lagaly, A. Weiss, Z. Naturforsch. B 28 (1973) 239.
- [13] K. Beneke, U. Grosse-Brauckmann, G. Lagaly, A. Weiss, Z. Naturforsch. B 28 (1973) 408.
- [14] C. Dion, S. Obbade, E. Raekelboom, F. Abraham, M. Saadi, J. Solid State Chem. 155 (2000) 342.
- [15] I. Duribreux, M. Saadi, S. Obbade, C. Dion, F. Abraham, J. Solid State Chem., in press.
- [16] M. Saadi, C. Dion, F. Abraham, J. Solid State Chem. 150 (2000) 72.
- [17] G. Smith, R.J. Snyder, J. Appl. Crystallogr. 12 (1979) 60.

- [18] SAINT, Version 5.01. Program for Reduction of Data Collected on Bruker AXS CCD Area Detector System, Bruker Analytical X-ray Systems, Madison, WI, 1998.
- [19] SABABS, Program for absorption correction using SMART CCD based on the method of Blessing, Blessing, R. H., Acta Crystallogr. A 51 (1995) 33.
- [20] G.M. Sheldrick, SHELXTL PC, Version 5.0, An integrated system for Solving, Refining and Displaying Crystal Structures from Diffraction Data; Siemens Analytical X-ray Instruments, Inc., Madison, WI, 1994.
- [21] M.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.
- [22] P.C. Burns, R.C. Ewing, F.C. Hawthorne, Can. Mineral. 35 (1997) 1551.
- [23] B.O. Loopstra, Acta Crystallogr. 17 (1964) 651.
- [24] L.M. Kovba, Radiokhimiya (Engl. Transl.) 13 (1971) 940.
- [25] M. Gasperin, R. Chevalier, Bull. Soc. Fr. Mineral. Cristallogr. 93 (1970) 18.
- [26] P.G. Dickens, G.P. Stuttard, J. Mater. Chem. 2 (1992) 691.
- [27] T.L. Cremers, P.G. Eller, R.A. Penneman, C.C. Herrick, Acta Crystallogr. 39 (1983) 1163.
- [28] S.V. Krivovichev, P.C. Burns, Can. Mineral. 38 (2000) 717.
- [29] J.M. Jackson, P.C. Burns, Can. Mineral. 39 (2001) 187.
- [30] P. Benard, D. Loüer, N. Dacheux, V. Brandel, M. Genet, Chem. Mater. 6 (1994) 1049.
- [31] N. Tancret, S. Obbade, F. Abraham, Eur. J. Solid. State Inorg. Chem. 32 (1995) 195.
- [32] A.M. Chipindale, P.J. Dickens, G.J. Flynnand, G.P. Stuttard, J. Mater. Chem. 5 (1) (1995) 141.
- [33] A. Locock, P.C. Burns, J. Solid State Chem. 163 (2002) 275.